Bacterial cheating drives the population dynamics of cooperative antibiotic resistance plasmids

نویسندگان

  • Eugene A Yurtsev
  • Hui Xiao Chao
  • Manoshi S Datta
  • Tatiana Artemova
  • Jeff Gore
چکیده

Inactivation of β-lactam antibiotics by resistant bacteria is a 'cooperative' behavior that may allow sensitive bacteria to survive antibiotic treatment. However, the factors that determine the fraction of resistant cells in the bacterial population remain unclear, indicating a fundamental gap in our understanding of how antibiotic resistance evolves. Here, we experimentally track the spread of a plasmid that encodes a β-lactamase enzyme through the bacterial population. We find that independent of the initial fraction of resistant cells, the population settles to an equilibrium fraction proportional to the antibiotic concentration divided by the cell density. A simple model explains this behavior, successfully predicting a data collapse over two orders of magnitude in antibiotic concentration. This model also successfully predicts that adding a commonly used β-lactamase inhibitor will lead to the spread of resistance, highlighting the need to incorporate social dynamics into the study of antibiotic resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collective antibiotic resistance: mechanisms and implications.

In collective resistance, microbial communities are able to survive antibiotic exposures that would be lethal to individual cells. In this review, we explore recent advances in understanding collective resistance in bacteria. The population dynamics of 'cheating' in a system with cooperative antibiotic inactivation have been described, providing insight into the demographic factors that determi...

متن کامل

Rule-based modelling of conjugative plasmid transfer and incompatibility

COSMIC-rules, an individual-based model for bacterial adaptation and evolution, has been used to study virtual transmission of plasmids within bacterial populations, in an environment varying between supportive and inhibitory. The simulations demonstrate spread of antibiotic resistance (R) plasmids, both compatible and incompatible, by the bacterial gene transfer process of conjugation. This pa...

متن کامل

Bacteriophages Limit the Existence Conditions for Conjugative Plasmids

UNLABELLED Bacteriophages are a major cause of bacterial mortality and impose strong selection on natural bacterial populations, yet their effects on the dynamics of conjugative plasmids have rarely been tested. We combined experimental evolution, mathematical modeling, and individual-based simulations to explain how the ecological and population genetics effects of bacteriophages upon bacteria...

متن کامل

Isolated cell behavior drives the evolution of antibiotic resistance

Bacterial antibiotic resistance is typically quantified by the minimum inhibitory concentration (MIC), which is defined as the minimal concentration of antibiotic that inhibits bacterial growth starting from a standard cell density. However, when antibiotic resistance is mediated by degradation, the collective inactivation of antibiotic by the bacterial population can cause the measured MIC to ...

متن کامل

The population biology of bacterial plasmids: a priori conditions for the existence of mobilizable nonconjugative factors.

A mathematical model for the population dynamics of nonconjugative plasmids that can be mobilized by conjugative factors is presented. In the analysis of the properties of this model, primary consideration is given to the conditions under which these nonself-transmissible extrachromosomal elements could become established and would be maintained in bacterial populations. The results of this ana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013